量子电动力学的发展:费曼的诺贝尔奖
基于狄拉克方程的成功,量子力学理论研究人员试图通过创建量子场论来量化电磁场。但所有这方面的尝试都失败了,因为根据该理论的计算结果是无穷大。他们对这个问题的解决方案是,使用一种称为重整化地数学技巧来忽略这些无穷大。但狄拉克说:“我对这种情况非常不满意,简单地忽略方程式中的无穷大,这不是明智的数学。 在这次会议的几个月之后,贝特发表了一篇论文,概述了第一个实验兰姆位移的方程式。在它的等式中,K值发散到无穷大,因此贝特决定使用重整化:通过用电子能量的有限值K=mc²来代替无限值。问题是进行此更改没有物理上的理由,使用它的唯一原因是最终结论和实验接近。 次年,也就是1948年,又举行了第二次物理会议。与会者除了上一次的那些人外,还有玻尔、狄拉克和费米也参加了。此次会议的重点是施温格的演讲,人们寄予厚望,希望他能解释他是如何计算g因子的。最终,施温格进行了5个小时的演讲,提出了一系列复杂且无法理解的公式。奥本海默后来评价道:“其他人发表演讲,展示如何进行计算。而施温格发表演讲,表明只有他能做到。” 1949年,这些人又召开了第三次会议。费曼将戴森的理论作为量子电动力学理论的最终形式。从那时起,费曼图成为美国物理学家的流行工具,从此名声大噪并成为新一代科学家的领导者。进一步的研究导致量子色动力学、电弱理论和粒子物理学标准模型的形成,这些都在很大程度上依赖于费曼图的使用。 在这之后,g因子的实验值不断被更新,而利用费曼图计算的戴森级数也符合实验结果。1965年,费曼、施温格和朝永振一郎也因此获得了诺贝尔物理学奖。 |
- 上一篇
反物质的应用:正电子发射断层扫描
正电子来源于放射性物质,一般情况下这种放射性物质是人体所需的物质,然后这些物质的其中一个元素使用短寿命的放射性同位素代替,我们关注的是具体的放射性同位素:这种形式的氟具有放射性,它会衰变成氧元素,因此FDG变成了正常的葡萄糖。正电子在体内不会传播得很远,它基本上会在其产生的位置与体内的电子相碰,这种能量的特别之处在于它产生两个伽马辐射光子。这两个光子会以180度向外传播。
- 下一篇
违反贝尔不等式相关性的不同解释:哥本哈根解释和多世界解释
尽管多世界解释消除了非定域性最令人烦恼的方面:远距离作用,但量子非定域性的其他方面:远程物体以纠缠形式表现出来的不可分离性仍然存在。还有随机力学、导波理论等其他解释,我们以后再说。